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Rheometrical flow systems 
Part 3. Flow between rotating eccentric cylinders 

By T. N. G. ABBOTT A N D  K. WALTERS 
Department of Applied Mathematics, University College of Wales, Aberystwyth 
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We give further consideration to flow situations which are steady in the sense 
that ajat = 0 but for which individual fluid elements are subjected to a small 
sinusoidal deformation. The particular situation studied involves the flow 
between eccentric circular cylinders which rotate about their axes with the 
same angular velocity Q. The eccentricity is assumed to be small. It is shown that 
measurements of the force on the inner cylinder can be used to determine the 
complex dynamic viscosity of an elastico-viscous liquid. 

The theory provides the necessary mathematical background for the operation 
of a new commercial rheometer. Consideration is given to the possibility of 
' on-line ' use of such an instrument for control purposes. 

1. Introduction 
In  previous papers under the same title (Walters 1970; Abbott & Walters 

1970, hereafter referred to as parts 1 and 2 ) ,  we considered rheometrical systems 
in which the flow was steady in the sense that ajat = 0, while individual fluid 
elements underwent a small unsteady (sinusoidal) deformation. Particular 
attention was paid to the Maxwell Orthogonal Rheometer and the Kepes 
Balance Rheometer. For these instruments, it  was shown that certain force or 
couple measurements could be immediately coiiverted into relevant complex- 
viscosity data. There is a growing interest in rheometers of this sort for a number 
of reasons: (i) there is the basic mathematical attraction of novel flow situations; 
(ii) there is the experimental advantage of requiring a steady flow in the new 
rheometers instead of the sinusoidal motion in the more conventional instru- 
ments; (iii) the new rheometers also have an advantage from the standpoint of 
interpreting experimental results, since the forces and couples can be immediately 
converted into relevant dynamic viscosity 7' and dynamic rigidity G' data. 

In  the present paper, we consider a new rheometrical system which makes use 
of the steady flow between eccentric circular cylinders rotating about their axes 
with the same angular velocity 0. We show that the two components of the force 
on the inner cylinder can be used to determine the dynamic viscosity 7' and 
dynamic rigidity G' of an elastico-viscous liquid. The analysis provides the 
mathematical background for the measurements made in a new rheometer 
which is to be manufactured by Sangamo Controls Ltd. 

The related problem in viscous-flow theory for which the outer cylinder is 
stationary has been considered by Wood (1957) and Kamal(l966). 

I7 F L M  43 



258 T .  N .  G .  Abbott and K .  Walters 

2. Basic theory 
All physical quantities will be referred to cylindrical polar co-ordinates 

(r, 8, z ) ,  the x axis being along the axis of the inner cylinder (figure 1). The distance 
between the axes of the cylinders will be denoted b~ a. In  most of what follows we 
shall work to first order in a, although second-order terms will be considered in 3 4. 

X 

FIGURE 1 

If the two cylinders rotate about their axes with the same angular velocity Q, 
the relevant boundary conditions to order a are 

qr) = 0, we) = f ir l ,  wb) = 0 on r = rl ,  

wCr) = Sza cos 8, qe) = Q[r  - a sin 81, wh) = 0 on r = r2 + a sin 8, 

where rl and r2 are the radii of the inner and the outer cylinders, respectively, 
and w(,,), qe) and vh) are the physical components of the velocity vector in the r ,  8 
and z directions, respectively. 

Incorporating the body forces in the isotropic pressure p ,  the stress equations 
of motion for a steady flow with wh) = 0 become? 

t Brackets placed round suffices are used to denote the p h y ~  'ial components of tensors. 
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where p is the density of the fluid and p i k  ( =  -pgik-+p2);k) is the stress tensor, 
gik being the metric tensor of the ( r ,  8, z )  co-ordinate system. 

The equation of continuity is 

In order to characterize the elastico-viscous liquid by means of suitable 
equations of state, we note first that when a = 0 and the axes of rotation are 
coincident a rigid body motion exists between the cylinders and the fluid ex- 
periences no deformation. The deformation is therefore small provided a is 
small. We may therefore write the equations of state in the form of integral 
expansions (cf. Coleman & No11 1961; Pipkin 1964; parts 1 and 2). The second- 
order expansion (which is required in § 4) is given byt 

p i k  = -r)gikf -&(t-t’)cik(tf)dt’ S’, 
&&(t - t’, t - t”) c{(t’) Gjk(te)dt’ dt”, (6) 

where 

xtibeing the position at  time t‘ of the element that is instantaneously at  the point 
xi at time t. 

In  most of the following analysis, we shall consider only first-order terms in a, 
so that the relevant expansion for the stress tensor involves just the first integral 
in (6). Our main concern is the determination of the complex viscosity v* from 
the flow situation under consideration, and we note that (cf. parts 1 and 2) 

When the axes of rotation are coincident, i.e. when a = 0, a solution to the 
relevant equations exists of the form 

v ( ~ )  = 0, v(@) = r!2, vb) = 0. 19) 

Working to first order in a, the boundary conditions suggest a velocity distribu- 
tion of the form q,.) = fiaF(r)ei@, 

t Covariant suffices are written below, contrevariant suffices above, and the usual 
summation convention for repeated suffices is implied. 
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2 60 T .  N .  G .  Abbott and K .  Wabters 

where F ( r )  may be complex and the real part is implied throughout. The velocity 
distribution (10)  satisfies the equation of continuity ( 5 )  identically. 

To determine the displacement functions x t i ,  which we shall write as r’, 0’, z’, 
we have to solve the equations (Oldroyd 1950) 

subject to r‘ = r,  0’ = 8, z’ = z when t’ = t .  

The solution of (10)  and ( 1  1 )  subject to ( 1 2 )  is 

r‘ = r + iaF(r)eiO[l- e-in(t-t’)], 

2’ = z.  

From (7) and (13 ) ,  we obtain 

c, = co2 = 0. 

We note from the form of the deformation tensor Ci, given by (14)  that individual 
fluid elements are subjected to a sinusoidal deformation. 

From (6), (8) and (14 ) ,  we obtain, to first order in a, 

I 

p;rz2, = P,;*2) = 0. I 
Substituting (15)  into ( 2 )  and (3) and writing 

p = ~ ~ + ~ p S 1 ~ r ~ + p , ( r ) r * R a e ~ o ,  
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where p o  is a constant, we obtain 

-+-- =-‘+a2 

r2-+4r- =pl+ct2 

d2F 3 d F  dp 
drz r dr dsr 

d3F d2F 
dr3 dr2 

where (cf. Walters 1968, 1970; Abbott & Walters 1970) 

a2 = - i a p / y * .  (18) 

Eliminating p l  between (16) and (17), we obtain 

(19) 
d4F d3F d2F dP 
dr4 dr3 dr2 dr 

r4-+6r3-+3r2---3r-+a2 

which has to be solved subject to 

where the dash refers to differentiation with respect to r .  
The main applications of the new rheometers under consideration are likely 

to be in the concentrated polymer solution and polymer melt areas, where 
inertial effects are negligible. For convenience of presentation, we therefore 
consider first this important special case and give detailed consideration to 
inertial effects in the next section. 

When inertial effects are ignored, (19) reduces to 

d4F d3F d2F dF 
dr4 dr3 dr2 dr 

r4-+6r3-+3r2--3r- = 0. 

The solution of (21) subject to (20) is 

(22) 
C 
r2 

F = Ar2+Blnr+ - +D, 

where 

and 

The suggested measurements in the eccentric-cylinder rheometer concern the 
forces X and Y on the inner cylinder in the x and y directions, respectively (see 
figure 1). These are given by 

x = ~ r l ~ o z n  cpCw) cos o -p(pGs, sin el ae, (24) 
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Y = Lrl/ozT[pr,, sin 6 +p(TB) cos 61 d6, ( 2 5 )  

where L is the length of the column of fluid and the stresses have to be evaluated 
at r = rl .  From (15), (17), ( 2 4 )  and (25), we obtain 

where the derivatives have to be evaluated at r = rl .  Substituting ( 2 2 )  and ( 2 3 )  
into ( 2 6 )  and separating real and imaginary parts, we obtain 

47rQay’L 
X =  1np- (p- q/(p+ 1)’ ( 2 7 )  

47raG‘L 
ln/l-(/3- 1)/(p2++1)’ 

Y =  

where p = r2/rl .  Equations ( 2 7 )  and ( 2 8 )  imply that ( X , Q )  and ( Y , Q )  
measurements can be immediately converted into ( f ,  Q) and (G’,  Q) data. 
These are likely to be the relevant formulae for most practical applications of the 
eccentric-cylinder rheometer. 

3. Inertial effects 
In the case of low viscosity fluids or high rotational speeds, inertial effects may 

be important. Here, the relevant equation for F(r)  is (19), which has to be solved 
subject to the boundary conditions ( 2 0 ) .  We first make the substitution 

d2F dF 
dr2 dr’ 

H = r - + 3 -  

( 30) 

The solution of (30) is H = A*J1(ar) +B*Yl(ar), (31) 

d2H dH 
dr dr 

whichreduces(19) to r 2 , - + r - + ( a 2 r 2 - - 1 ) H =  0. 

where A* and B* are arbitrary constants and J1 and Yl are Bessel functions of 
the first and second kinds, respectively. Substituting (31) into ( 2 9 )  and solving for 
F ,  we obtain 

where and are arbitrary constants. Using results given in Watson (1922,  
p. 1 3 2 ) ,  ( 3 2 )  reduces to 

-Jl(ar) -Yl(ar) 6 
F = A -  +B- +,+D, r r (33) 

where 2 and B are arbitrary constants. Applying the boundary conditions ( 2 0 ) ,  
we require 

(34) 
- 2 a  A = - - - -  3 3 [.; Yz(ar2) - .: Yz(ar1)19 

AT1 r2 
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where 

+Ba[a2r2,Y4(ar,) - 6ar,  y3(ar1) + 2Y2(arl)]], (39) 

where A, B and 6 are given by (34 ) ,  (35 )  and (36 ) .  
Equation (39) is likely to be too complicated to be useful to experimentalists 

who are faced with the problem of interpreting experimental results. However, 
in most cases where inertial effects are not negligible, they are nevertheless small. 
It is therefore useful to simplify (39) by considering a to be small. If we use the 
power series expansions for the Bessel functions in (39) and neglect terms of 
order a4, we obtain 

4rQay*L x-iY = 
1np- (p- 1) 

This equation may be compared with the approximate equations which are 
available in the more conventional methods for measuring y* (cf. Walters 
1968). 

If the annular gap is small, it is possible to further simplify (40). In  this case, 
we obtain? 

where d = r2 - rl .  This formula may be useful to experimentalists in assessing 
the relative effects of varying the geometrical, flow and material parameters. 

f We have simply retained the leading power in d in each relevant term. 
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4. Non-linear effects 
In this section, we show that if terms of order a2 are included in the analysis, 

the expression for X - i Y  is still given by (26), with the implication that non- 
linear effects will not manifest themselves until terms of order a3 are considered. 

q7) = 0, q,) = f i r l ,  wb) = 0 when r = r l ,  ' 
q,) = Qacos0,  qe) = Q[r-asinO], vb) = 0, 

The boundary conditions to order a2 are 

(42) I when 

In  view of these boundary conditions, we are led to write, t o  order a2.  

r = r2 + a sin 6' - (a2/%,) cos2 8. 

q7) = fi[aF(r)eio + a2M(r)ie2ie],  

'Uk) = 0, 
where ll4 and N are subject t o  

1. (461 
M ( r )  = 0, M'(r )  = 0, N ( r )  = 0 on r = rl ,  

i ~ ( r )  = 0, " ( r )  = F', N(r)  = 4rF" on r = r2.j 

The velocity distribution given by (43)-(45) automatically satisfies the equation 
of continuity (5). 

For convenience, we shall here neglect inertial effects so that we may assume 
that) F is real (cf. 92) .  The displacement functions corresponding to (43)-(45) 
are then given by? 

1 1.' = r + iaFeio{ 1 - e-in(t-6)' 

1 & j f e 2 i 0 {  1 - e-2in(t-t') 

[ - i f i ( t - t ' ) + { i - e -  (47) 

t In this section, we confine attention to elastico-viscous liquids having a fading 
memory, which implies that the effective range of (t-t') is (0 ,  LJ, where 6 is some multiple 
of the highcst relaxation time. This ensures that the explicit appearance of (8-t') in (47) 
and (48) does not violate the series expansion in Q. 
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2’ = 2.  (49) 

From (6), (47)-(49), it is not difficult to  deduce that the relevant (order a2) 

stresses will be of the form 

(50)  I Pb,) = a2[h1(r) e2io + k(41, 
R a e )  = a2[h2(r) eZie + 4(r)I7 

Pw) = a2[h3(r) eZie -I- k3(r)I, 

where the h’s and k’s are in general complex. Substituting (50) into (24) and ( 2 5 ) ,  
it can readily be shown that the order u2 contribution to  X and Y will be zero. 
This means that non-linear effects will not manifest themselves until terms of 
order a3 are considered. 

The above conclusion, together with a careful study of the experimental 
results of Maxwell & Chartoff ( 1  965) for the Orthogonal Rheometer, leads us to 
suspect that the working formulae given in $3 2 and 3 may be valid over a fairly 
reasonable range of a, say 0 6 a < 0.3 (r2 - r l ) .  

5. On-line possibilities 
One of the pressing technological requirements at the present time is for the 

advent of ‘ i n  situ’ rheometers which could provide ‘on line’ control in industrial 
processes. Ideally, one would wish to  locate such a rheometer in the process 
without affecting the basic flow. I n  the case of the eccentric-cylinder rheometer 
one would therefore envisage a flow along the cylinders (i.e. in the z direction) in 
addition to the flow created by the rheometcr itself. However, this does not 
appear to  be feasible, since the work of Jones ( 1  964) on a related problem would 
certainly lead one to  expect the force in the y direction to be affected by the flow 
in the x direction, and we shall now show that both the forces (i.e. Y and X )  will 
in fact be modified by the superimposed flow. To demonstrate this, we still 
consider the integral equation employed in $ 3  2 and 3 although the deformation is 
now not necessarily small.? 

We consider essentially the same situation as in $ 2  except that there is now a 
constant pressure gradient P in the z direction. We therefore consider a velocity 
distribution of the form 

q,) = QaF(r) eio, 

~ ‘ ( z )  = wo(r) + awl(r) ei@, 

where wo and w1 are subject to  

wo = 0 on r = r l  and r = r 2 ,  

wL= 0 on r = r l ,  

w1 = i(dw,/dr) on r = r2.  

Our concern here is to demonstrate the general effect of the superimposed flow on 
X and Y and the simplc integral equation is sufficient for this purpose. 
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Solving ( 1  1 )  and (51)  for the displacement functions, we obtain 

+- a F d w ,  --eZO[-iQ(t-t')+{l . -e-in(t-y)}]. (55)  
Q dr 

w,  can be easily obtained from the ' concentric ' situation and we shall assume 

From (6) (with M, = 0) ,  (7) ,  (53)-(55), it  can be shown that the stresses to 
that this is a known function of r in what follows. 

where 

We note that when R = 0, ,u* = k, v* = q,, 7, and k: being real constants. 
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From the equations of motion, the 'order a' contribution to the pressure is 
given by 

+,u*ueie [ r z  d (;- w,dw 2) + 2w1dw, dr - wd, . d { F ;( dw, F)2) - 2i: (?)'I 
+kae i~[ i r - { - ( - )~ )+  d F dw, 2 i : ( 2 ) ' ] .  

dr r dr 

Substituting (56), (59) and (63) into (24) and (25) ,  we obtain 

(64) 
dw, dw, X - i Y  = naQv*L +m,u*Lr,-- -. 
dr dr 

d3F 

In  principle, F and w1 can be determined from two coupled differential equations 
obtained from the equations of motion. These are too complicated to be given 
here. 

From (64) it is not difficult to deduce that when Q = 0, X = 0, as one would 
expect from symmetry considerations. However, when IR =+ 0, the fact that 
F ( r )  depends on wo and w1 (and hence on the pressure gradient P) and the fact 
that ,u* is in general complex implies that both X and Y are affected by the 
superimposed flow, the one exception being when this flow is very slow. 

We see, therefore, that for the rheometer to be useful in on-line control it 
would have to be located in a ' branch ' line where the general flow could be stopped 
during the time of testing. In  this connexion, the eccentric-cylinder rheometer 
would appear to have significant advantages over the orthogonal and balance 
rheometers considered in parts I and 2. 
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